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Abstract 

Artificial intelligent systems have a great potential for identifying objects in unstructured 
data such as images. Unmanned aerial vehicles (UAV) open up new perspectives for 

weed monitoring because it enables very high-resolution remote sensing imagery (VHR) 
from which weed plants can be outlined even on the species-level. In this paper, a UAV 

platform is combined with an AI system (WeedAI) for wide-area real-time weed moni-

toring and mapping by implementing an improved YOLOv4 algorithm on an NVIDIA AGX 

Xavier board. In the current stage of our work, we have completed the integration of 
hardware and development of the software framework for the WeedAI system. The sys-

tem is capable of automatically capturing VHR imagery at fixed intervals while flying at 
different flight altitudes. The improved YOLOv4 neural network has been developed to 
detect weeds with high accuracy and low latency. The deployment of the improved 

YOLOv4 neural network in the NVIDI AGX Xavier board is in progress. Further optimiza-

tion is also planned to enable the WeedAI system to monitor a wider area in a single 
flight and provide the improved YOLOv4 neural network with the ability to differentiate 

between weed species. 

1. Introduction 

Because weeds are not uniformly distributed but occur in patches across the field with 

a spatially varying composition of weed species [1], spraying species-specific herbi-

cides only at specific locations with weed occurrence can strongly reduce herbicide use 
and associated environmental impacts. This requires precise information about the site- 

and species-specific weed occurrence in an agricultural field. This paper proposes an 

intelligent, real-time, UAV-based weed monitoring and mapping system, called WeedAI 

system, to generate site- and species-specific distribution information for weeds in ag-

ricultural fields. For this purpose, very high-resolution image data (VHR) is captured at 

low altitudes and classified directly on the UAV platform using a weed recognition mode 

based on an improved YOLOv4 real-time object-detection system [2]. Recognition re-

sults are transmitted to the ground station in real time and converted into distribution 
information of weeds.  This article will introduce the design process and software/hard-

ware components of the WeedAI system from three aspects: system integration, im-

proved YOLOv4 neural network development, and software framework. Finally, the pre-

liminary results of the project will be showcased. 
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2. System Integration

As shown in Figure 1, the WeedAI system consists of three main parts: an onboard 

computer system, the UAV platform, and the ground station. Additionally, a Sony Alpha 

A6000 camera is mounted on a gimbal located underneath the drone and an Intel Re-

alsense D455 depth camera is mounted on the main frame of the drone using a 3D-

printed connector. They are connected to an NVIDIA Jetson board via USB 2.0 cables.

Figure 1: System structure diagram. 

The onboard computer consists of an Jetson AGX Xavier 32 GB module board (NVIDIA 
corporation, Santa Clara, USA) with up to 32 TeraOps1 of AI performance [3] and a car-
rier board X221 [4] (Auvidea GmbH, Denklingen, Germany). It is mounted on the top of 

the flying platform and connected via a UART serial interface to the drone’s flight con-
troller. The power is supplied through a 12V step-down switching power regulator that 

is directly connected to the primary battery bus (4S, nominal 14.8V).

The flying platform is an octorotor OktopusXL (CiS GmbH, Bentwisch, Germany), which 

features an 8 propellers design, uses the Pixhawk autopilot hardware and is equipped 
with an HD video transmission and control system. The default maximum lifting capacity 

is approximately 3kg. It uses a modified version of the open source Firmware PX4, 

which is optimized in regards of control, drivers and state estimation. Sensorwise, the 
OktopusXL features two accelerometers/gyroscopes, a barometer, Ublox M8N GPS 
and a laser rangefinder. 

In order to overcome the change of the center of gravity and additional drag caused by 

the NVIDIA board (top-mounted), the flight control of the drone is optimized by using a
wind and external drag-force estimation algorithm. The laser rangefinder data is added 

into the extended Kalman-Filter model to increase long term accuracy of the relative 

height estimation. General PID parameters were also tuned very carefully.

1 Floating point operations per second
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PX4 uses MAVLINK [5] in order to communicate with internal and external nodes. It is 

used for communication with the onboard computer as well as interaction with the Mis-

sionControl Software [6] (CiS GmbH, Bentwisch, Germany) to create and execute flight 

plans. The MissionControl Software was optimized to plan low-altitude flights with ca-

pabilities to follow terrain, adjust for uncertainties in elevation and monitor the in-flight 

status.

Visual Data from the Nvidia board can be shared via the HD video transmission and 

control system. The computer is connected via the HDMI protocol, and all data (includ-

ing control, video and drone telemetry) is streamed via 2.4 GHz to a remote control unit. 

The technically possible range is approximately 30km on line of sight. 

A Windows laptop is used as a ground station and a two-way full-duplex communica-

tion is established via a 433MHz telemetry radio connected to the NVIDIA board. This 

enables the ground station to transmit control commands and receive weed monitoring 

information within a range of 300m.

3. Improved YOLOv4 neural network design and training

In order to reduce the requirements for hardware configuration and to improve the per-

formance of the recognition, an improved YOLOv4 deep neural network (cf. Figure 2)
was designed and trained using the PyTorch framework [7].

Figure 2: Improved-YOLOv4 weed detection model. CBL: convolution, batch normalization, and Leak-
ReLU.
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The CSPDarknet53 backbone borrows the cross-stage partial (CSP) from CSPNet [8] 

and adds a CSP on each of the five residual blocks, which improves learning ability of 

convolutional neural networks (CNNs) and allows it to maintain high performance while 

reducing network weight [9]. Shallow features in the CSPDarknet53 contain more target 

location information, such as contours and textures, but less semantic information. On 

the other hand, deeper features contain richer semantic information, whereas the object 

location information is coarse. 

YOLOv4's neck consists of spatial pyramid pooling (SPP) [2], the feature pyramid net-

work (FPN) [10], and the feature aggregator network (PANet) [11]. PANet attempts to 

improve the process of instance segmentation by retaining spatial information, which 

aids in proper pixel localization for prediction. FPN can pass deep semantic information 

to shallow layers and fuse semantic and location information to help YOLOv4 to detect 

small objects and improve overall weed detection performance.  

In addition, to overcome the problems of occlusion, small targets for detection (weed 

plants), and high similarity in the weed detection process, the Convolutional Block At-

tention Module (CBAM) [12,13,14] is integrated into FPN. The extracted information is 

fused in order to use low-level location information in high-level feature maps. To im-

prove the representation power of feature maps, we apply CBAM to the output of dif-

ferent layers of FPN and aggregate it with the output of different layers. 

The experimental framework used in this study was developed on a Linux 64-bit oper-

ating system, utilized the Python 3.9 programming environment along with the PyTorch 

1.11 deep learning framework for training and testing the model. Models were executed 
on a single NVIDIA GeForce RTX 2080Ti GPU with 11 GB of video memory and Cuda 

11.2. The dataset was divided into training, validation, and test sets with a ratio of 8:1:1, 
respectively. In order to help annotators and increase the number of images, each im-

age was divided into 6 parts to obtain 1662 images. The models were trained for 200 

epochs using a batch size of 16. The training model was optimized using stochastic 

gradient descent (SGD) algorithm, with the momentum and learning rate values set at 
0.95 and 0.001, respectively. 

Further optimization is performed by the TensorRT2 optimizer on the NVIDIA board, 

which performs hardware-specific optimization and finally generates a TensorRT infer-
ence engine optimized for the NVIDIA AGX Xavier module. The deployment of a Ten-

sorRT inference engine used the TensorRT runtime API with Python bindings.   

4. Software framework development 

The software framework of the WeedAI system is shown in Figure 3. Two data transfer 
programs run on the ground station and in the NVIDIA board separately to realize two-

way communication. To save power, the NVIDIA board only calls the weed recognition 
and obstacle avoidance programs when it receives the command, and it can also be 

shut down remotely to save energy for flight-critical systems in case of low voltage. 

 

2 see https://developer.nvidia.com/tensorrt  
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Figure 3: Software framework diagram. Solid lines represent program calls, dashed lines represent data 
flow, and arrows indicate the direction of call and data flow.

The weed recognition program controls the camera to take photos at fixed time intervals
using the gphoto2 library,3 obtaining the shooting location of the photo by reading the 
real-time flight information from the autopilot. The captured photo is immediately pro-
cessed by an optimized inference engine running on the GPU to generate the recogni-
tion result, including the type, quantity and location of the weeds in the photo. This 
result together with shooting time and shooting location generates the weed monitoring 
information and is stored in a .csv file. At the same time, the on board data transfer 
program sends the newly added weed monitoring information to the ground station.

5. Results

The prototype of the WeedAI system was first tested on an experimental winter wheat 

field (ATB, Potsdam) to test the flight stability of the CiS drone at low altitude and the 

shooting performance of the camera. The weed recognition program was not tested in 

these test flights. All three flights were performed with different flight altitudes, namely 

3m, 2m and 1.5m. The photos were taken by the Sony camera A6000 using a 50mm 

lens in fully automatic mode and with a fixed time interval of 1.5s. The number of photos 
and the flight duration are shown in Table 1.

Flight altitude Flight duration Number of photos
3m 16min 357
2m 14min 299

1.5m 13min 258

Table 1: The number of photos and the flight duration per flight.

The test result shows that the NVIDIA board is capable of controlling the Sony camera 
to capture photos. However, because the camera is always moving, it takes longer to 
focus than on the ground, therefore the capturing cannot always be completed within 

1.5s. To overcome this issue, a Sony Multi-port connector is used to replace the regular 

3 see http://gphoto.org/ 
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micro USB connector. The Sony Multi-port connector has 10 additional pinouts com-

pared to the regular micro USB. The usage of each pinout is listed in Table 2. By shorting 

Pin 5 to Pin 2 and setting the focus mode of the camera to continuous autofocus, the 

camera can maintain focus continuously. In the further test we found this solution can 

effectively reduce the focus time for each shot. The downside is that the camera's 

power consumption increases significantly. 

Pin Num. Usage 
1 Power On / Off: Short to ground to toggle between Power On and 

Power Off 
2 Ground 
3 Composite Video Out 
4 Shutter Release: Short to ground to trigger the shutter release 
5 Focus: Short to ground to trigger focusing 
6 Select: Select multiport functionalities / protocol 
7 UART_RX 
8 UART_TX 
9 Reset 

10 2.8 Volt to 3.3 Volt output 

Table 2: Pinout usages of the Sony Multi-port connector. 

For subsequent flights, the Sony camera will be controlled by the NVIDIA board to cap-
ture in manual expose mode with a shutter time of 1/800s and an aperture of F5.6, to 

reduce blurring caused by vibration and relative motion. By the test flight, it was also 

found that the CiS drone can fly smoothly at low altitudes, but the terrain tracking ability 
is closely related to the accuracy of the terrain information on the electronic map. 

The improved YOLOv4 neural network was tested in labor on the test set with 167 an-

notated images. The algorithm loss function metric is IoU (intersection over union). If 

the score for each class exceeds the threshold, namely 0.5, the score is sorted. The 
score and prediction box position are then subjected to non-maximal suppression 

(NMS) processing. Finally, the prediction result is the bounding box with the highest 
probability. The precision-recall curve is shown in Figure 4. The mean average precision 

to detect weeds was 65.68%. The improved model achieved precision, recall, and F1-

score, 93.04%, 60.81%, and 57.00%, respectively. It should be noted that this result is 

a preliminary result obtained by the model trained on a small training set, as the anno-

tation work has not yet been completed. As shown in Figure 5, the improved YOLOv4 

model could optimize the detection by enhancing useful features (weed) in the modeling 

process and overcome occlusion and noise in the field environment. It improved the 
ability to detect weeds even with very small sizes. Furthermore, the proposed model 

could detect weeds in a dense and nested environment, which is one of the most sig-

nificant challenges in weed detection (Figure 5 (b) and (c)). 
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Figure 4: Precision–recall curves of the detection results of the model with test set.

Figure 5: Examples of weed detection results of test set with different challenges. (a) occlusion; (b) dense;
(c) nested.

6. Conclusion and outlook

The prototype of the WeedAI system has been developed and tested on both hardware 
and software parts. The flight performance meets the requirements of the high-payload 

and low-altitude flight. The on-board computer was integrated in the system and uses 

the developed software framework to realize the control of the system and the trans-

mission of data. The improved YOLOv4 neural network exhibits robust small object de-

tection capability. Currently, the network deployment is in progress, and we aim to com-
pare different deployment methods, such as ONNX Runtime and TensorRT Runtime, to 

obtain meaningful results. Hardware optimizations will focus on reducing the interval 

between image capture and optimizing terrain-following flight capability. Further training 

and structure optimization are necessary to enhance the improved YOLOv4 network's 
ability to differentiate between weed species.
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